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SUMMARY

A comprehensively theoretical model is developed and numerically solved to investigate the phase distribution
phenomena in a two-dimensional, axisymmetric, developing, two-phase bubbly flow. The Eulerian approach
treats the fluid phase as a continuum and solved Eulerian conservation equations for the liquid phase. The
Lagrangian bubbles are tracked by solving the equation of motion for the gas phase. The interphase momentum
changes are included in the equations. The numerical model successfully predicts detailed flow velocity profiles
for both liquid and gas phases. The development of the wall-peaking phenomenon of the void fraction and
velocity profiles is also characterized for the developing flow. For 42 experiments in which the mean void
fraction is less than 20 per cent, numerical calculations demonstrate that the predictions agree well with Liu’s
experimental data.# 1997 by John Wiley & Sons, Ltd.
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INTRODUCTION

In a two-phase bubbly flow, the mass, momentum and energy transfer processes involved are
inherently complicated and closely linked to phase distribution profiles through the strong interaction
at the gas–liquid interface. The physical mechanism can only be modelled if multidimensional
phenomena are accounted for. Multidimensional analyses of two-phase flows are both interesting and
challenging in terms of physical modelling and numerical methodology. Numerous mathematical
models have been developed to describe the mechanics of two-phase flows, e.g. the two-fluid model
is the most sophisticated and acceptable one for gas–liquid two-phase flows. It is developed using a
time-averaged framework which takes account of the phase change as well as the interfacial
momentum and energy transport in both axial and lateral directions. Various correlations and
parameters are suggested by different authors and need to be validated for different flow and heat
transfer conditions.

As far as computational methodologies are concerned, two approaches can be used to predict the
detailed physical mechanisms of two-phase flows: Eulerian–Eulerian and Eulerian–Lagrangian
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approaches. In the Eulerian–Eulerian approach both phases are treated as continuous media and the
two phases are coupled through phase interactions. The Eulerian–Lagrangian approach treats the fluid
phase as a continuum and the second phase as discrete particles (bubbles). The interactions between
phases are also considered.

Numerical simulations using the Eulerian–Eulerian-type two-phase model for liquid–gas phases
have been performed in recent years. However, the large differences in density and mass between air
and water make the system of governing equations very stiff and difficult to converge numerically,
especially in the gas phase. Therefore not only were the calculations for the gas phase conducted with
simplification by solving alternative equations in previous works, but also the predicted gas velocity
distributions were either not presented or not compared with experimental data.2–5 Those reports
reveal the difficulty in predicting gas velocity profiles in a reasonably accurate manner.

The Eulerian–Lagrangian approach has been widely used for gas–solid and gas–droplet two-phase
flows. Crowe6 reviewed the numerical models for dilute gas–particle flows and categorized this
approach as trajectory models. These models have been very popular in predicting particulate two-
phase flows.7 The present work extends the models to study the mixing of air bubbles and water,
since no work seems to have been reported previously using this approach. Because the bubbles in a
liquid flow field and the interactions among bubbles are sporadic, the Lagrangian approach can not
only directly simulate the movement of the dispersed phase in two-phase flows but can also eliminate
the numerical diffusion of the disperse phase. In the present work a two-fluid model formulation is
employed to investigate the phase distribution mechanism in a two-phase bubbly flow. For the liquid
(continuous) phase the flow field is described in Eulerian co-ordinates and subsequently obtained by
solving a set of partial differential equations based on the conservation of mass and momentum as
well as the interfactial transfer laws. While considering the Lagrangian viewpoint for the gas
(disperse) phase, each bubble is traced and observed as it moves in space. The trajectory and velocity
of a bubble can eventually be determined. During the computations the interaction between the liquid
flow field and the gas bubbles is defined by the gas–liquid interfactial transfer laws. After completing
the calculation procedure, velocity distributions for both liquid and gas phases, void fraction profile
and liquid phase turbulent properties can be obtained simultaneously. The validity of the present
model is verified by comparing the predicted results with the experimental data of Liu.8

PHYSICAL AND MATHEMATICAL MODEL ASSUMPTIONS

The following assumptions are made in this study to simplify the analysis.

1. The bubbles are assumed to be spherical despite the fact that they may be ellipsoidal or even
‘wobbly’ in shape.

2. The bubble size remains unchanged.
3. The number of bubbles is conserved, i.e. no bubble break-up or coalescence occurs.

MODELLING FOR LIQUID PHASE

In this study the general form of the two-fluid model proposed by Ishii9 is employed for the liquid
phase. The following equations can be obtained by applying the time-averaging operation to
multidimensional conservation equations for mass and momentum.
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Continuity equation

@�aLrL�

@t
� H ? �aLrL

�UL� � 0; �1�

where �Ut and aL are the time-averaged velocity and volumetric fraction for the liquid phase
respectively andrL is the liquid density. This equation states that there is no net production of mass.
The summation of the volumetric fractions for the liquid and gas phases is equal to unity, implying
that the mixture is saturated. Thus

aL � aG � 1; �2�

where the subscripts L and G refer to the liquid and gas phases respectively.

Momentum equation

@�aLrL
�UL�

@t
� H ? �aLrL

�UL
�UL� ÿ aLH

�P � H ? aLT t
L � aLrLg � ML; �3�

where �P is the pressure,g is the gravitational acceleration,Tt
L is the stress tensor andML is the

volumetric momentum transfer rate at the liquid–gas interface, which consists of several parts as
shown below:

ML � MD
L � ML

L � MW
L � Metc:

L : �4�

The first three terms in (4),MD
L ;ML

L andMW
L , represent the momentum transfer at the liquid–gas

interface due to interfacial drag, lift and wall forces respectively. The last termMetc:
L includes such

effects as the virtual mass, Busset force and collision forces, which are neglected in this study.
The interfacial drag force for the liquid phase per unit volume,MD

L , can be derived via the model
proposed by Ishii and Zuber10 as

MD
L �

3
4

1
db

aGrLCDj
�UG ÿ

�ULj�
�UG ÿ

�UL�; �5�

wheredb is the bubble diameter and the drag coefficientCD is expressed as11

CD �

24
Reb

�1 � 0�1Re0�75
b �; �6�

with Reb is the bubble Reynolds number given by

Reb �

dbrLj
�UG ÿ

�ULj

mL=�1 ÿ aG�
: �7�

The lateral lift forceML
L is obtained using the model presented by Drew and Lahey.12 Thus we

have

ML
L � ÿCLaGrL�

�UG ÿ
�UL� � �H�

�UL�; �8�

where the lift coefficientCL ranges from 0�01 (for highly viscous flow) to 0�5 (for inviscid flow) for
bubbly flows according to the data of Wanget al.13

The wall force termMW
L takes the form developed by Antalet al.,2

MW
L � ÿ

aGrLjUk
j

2

db=2
Cw1 � Cw2

db

2y0

� �� �

nw; �9�
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wherey0 is the distance between the bubble centre and the wall,

U
k
� �

�UG ÿ
�UL� ÿ �nw ? �

�UG ÿ
�UL��nw; �10�

Cw1 � ÿ0�104 ÿ 0�06j �UG ÿ
�ULj; �11�

Cw2 � 0�147 �12�

andnw is the unit vector normal to the wall and pointing to the centre of the channel. This model was
originally developed for laminar flow conditions, it is extended to turbulent flow conditions.

The stress tensor in (3),Tt
L, is given by

Tt
L � ÿrLu0

Lu0

L � mLH
�UL; �13�

where the first term on the right-hand side is the turbulent stress tensor and the second term is the
viscous stress tensor. The turbulent stress tensor can be expressed as

ÿrLu0

Lu0

L � m
0

LH
�UL: �14�

The eddy viscosity for the liquid phase,mt
L, is formulated by the high-Reynolds-number form of the

k–e model as below.

TURBULENCE MODEL

Turbulent pipe flow can be a so-called benchmark flow to evaluate the constants in turbulence models
for single-phase flows. Martinuzzi and Pollard14 performed a comparative study of the prediction of
developing turbulent pipe flow and found that the results obtained with the low-Reynolds-numberk–e
model are in better agreement with experimental data than the results obtained with other models,
especially at low Reynolds numbers. The six models they employed are high- and low-Reynolds-
number versions of thek–e model and four versions of the algebraic stress model. The prediction
using the high-Reynolds-numberk–e model agrees best with measurements at a Reynolds number of
10,000 and the cases in this study are in the same range. The model in this study solves the transport
equations of turbulent kinetic energykL and its dissipation rateeL and is formulated as follows.

Turbulent kinetic energy equation

@aLkL

@t
� H ? �aLrLkL

�UL� � H ? aL
m

t
L

sk
�HkL�

� �

� aL�GL ÿ rLeL� � Sk
L: �15�

Turbulent energy dissipation rate equation

@aLeL
@t

� H ? �aLrLeL
�UL� � H ? aL

m
t
L

s
e

�HeL�

� �

� aL�Ce1GL ÿ C
e2rLeL�

eL

kL
� Se

L: �16�

The effective Prandtl numbers for the turbulent kinetic energy,sk , and for the dissipation rate,s
e
,

and the constants in (16),C
e1 andC

e2, are listed in Table I. These numbers are given by Launder and
Spalding15 for single-phase turbulent flows. The turbulent kinetic energy production rateGL is
expressed

GL � m
t
L�H

�UL :H �UL�; �17�
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where the eddy viscosity of the liquid phase,m
t
L, is given by

m
t
L � C

m
rL

k2
L

eL
� C

mbrL
db

2
aGj

�UG ÿ
�ULj: �18�

The first term on the right-hand side of (18) is the turbulent viscosity induced by shear. As
indicated in Table I, the proportionality constantC

m
for single-phase flows15 is adopted. The second

term includes the modifications due to the coexistence of liquid phase and bubbles. The formulation
of the turbulence model for bubbly flow needs to be further validated. The second term accounts for
the turbulence resulting from bubble agitation.16 C

mb is chosen as 1�2.16 The sources for turbulent
kinetic energy and energy dissipation rate due to interfacial interaction,Sk

L andSe

L are treated using
the model proposed by de Bertodanoet al.17

Sk
L � MD

L ? �
�UG ÿ

�UL�; �19�

Se

L � C
e2
eL

kL
Sk

L: �20�

MODELLING FOR GAS PHASE

For the gas phase the Lagrangian (instead of the Eulerian) approach is adopted here. Bubbles are
considered to be spherical particles. The changes in the shape and size of bubbles are assumed to be
negligible when the bubbles pass through the flow field. There are a number of forms for the equation
of motion of a small particle in a flow field and these equations are based on the equations developed
by Basset, Boussinesq and Oseen. Tschen18 extended the solution to unsteady Stokes flow in a
uniform fluid and to non-uniform flows. No disturbance was unsteady Stokes flow in a uniform fluid
and to non-uniform flows. No disturbance was assumed due to the existence of the particle and no
particle–particle interactions were considered in the modified Tchen equation. In bubbly flow the
bubble size is not negligible compared with the pipe diameter and the bubble density is very low
compared with that of water, so the dominating forces of the bubble motion are the buoyancy force
(FB), interfacial drag (FD), lift force (FI) and wall force (FW). Hence the following equation of
motion for the bubble is employed:

mb
d �UG

dt
� FB � FD � FL � FW; �21�

wheremb � rGVb (Vb is the volume of a bubble with diameterdb). The buoyancy force is

FB � ÿ�rL ÿ rG�Vbg: �22�

The interfacial forces on the right-hand side of (21) can be obtained from (5), (8) and (9) using the
relationship

Fx � Mx
GVb=aG �23�

and noting thatMx
G � ÿMx

L, wherex refers to the drag force (D), lift force (L) or wall force (W).

Table I. Constants ink–e model15

C
m

sk s
e

C
e1 C

e2

0�09 1�0 1�3 1�44 1�92
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BOUNDARY CONDITIONS

The liquid and gas phase velocities and void fraction distributions at the pipe inlet are given by
experimental conditions and in this study are all uniform at the entrance of the pipe. However, the
void profile is not strictly uniform at the inlet, even though bubbles are uniformly injected into the
pipe. Since the bubble size is fixed and spherical in this study, the bubble radius is the minimum
distance between the bubble centre point and the pipe wall. Excluding the near-wall region, the void
profile in the radial direction is uniform. GivenJL, the superficial velocity of the liquid phase,JG, the
superficial velocity of the gas phase, andhaGi, the mean void fraction, the liquid and gas inlet
velocities can be determined asJL=�1 ÿ haGi� andJG=haGi respectively.

At the pipe wall a logarithmic velocity profile is applied to the liquid phase flow field. The wall
function for turbulent kinetic energy and dissipation rate at the edge of the buffer region (where
y� � 30) can be derived by setting the turbulent kinetic energy production rate equal to the
dissipation rate. Thus

kL;p �

u
t
ky

C
m

u3
t

ky
�

Sk
L

rL�1 ÿ aG�

� �" #1=2

; �24�

eL;p �

u3
t

ky
�

Sk
L

rL�1 ÿ aG�
; �25�

whereu
t

is the frictional velocity,k is the von Karman constant andy is the distance away from the
pipe wall. Along the centreline of the pipe a symmetry condition is imposed on all flow properties.

NUMERICAL METHOD AND SOLUTION PROCEDURE

The solution procedure of the present study combines the Eulerian approach for the liquid phase
(continuous phase) and the Lagrangian approach for the gas phase (disperse phase) and takes the
interactions between the two phases into account simultaneously. Therefore the numerical procedure
in the present work can be separated into two major parts and iterations are proceeded between them
until convergence is reached.

In the first part the liquid phase will be treated. The solution procedure for the liquid phase is based
on the same ideas as for single-phase flow, although the additional variables of gas void fraction
distribution and gas velocities need to be implemented from the initial guesses for the first iteration
step or from the solution of the equation of motion for the bubbles after themth iteration. The
location of the void fraction in the staggered grid is at the same nodes as the pressure. The
conservation equations (1) and (3) of mass and momentum are discretized by a control volume
approach with a 49621 staggered grid system. The SIMPLEC scheme19 is adopted for the velocity–
pressure coupling. The liquid phase velocities in both axial and radial directions, the turbulent kinetic
energy, turbulent kinetic energy dissipation rate and system pressure can be obtained until convergent
criteria are satisfied.

In the second part the gas phase velocity field is obtained by injectingN bubbles at the inlet of the
vertical pipe. The injected bubbles are uniformly distributed at the inlet. The equation of motion forN
bubbles, equation (21), is solved over time intervalsDt ranging from 6�7561075 to 2�856 1074 s,
which are about two orders less than the time scale of turbulent eddies. The use of these smaller time
intervals will ensure that the bubble influence on the fluid is under control and that convergence can
be reached during the time interval. Theith bubble location at timet � Dt; xi

t�Dt, is determined by

xi
t�Dt � xi

t � Vi
G � Dt; �26�
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wherexi
t is the location of the injected bubbles at the beginning of the time interval betweent and

t � Dt. Therefore every bubble is tracked and recorded while travelling in the liquid flow. Based on
the known information on bubble size and tracks, the updated void fraction distribution can be
obtained by summing the volumes of all sampled bubbles which appear in the control volume of each
computational node and then normalizing the sum by the mean void fraction. Meanwhile, updated gas
velocitiesUG andVG at the specific computational cell are obtained by averaging the velocities of
those bubbles passing the specific computational cell. To examine the sensitivity of the number of
bubbles injected to the void fraction profile, numerical experiments using different numbers (N) of
bubbles have been conducted. Those results indicate that the void fractions predicted by 1000 bubbles
differ from those for 2000 bubbles by a maximum value of 0�1% of the void fraction at each node.

The detailed procedure of the entire computation is as follows.

1. Guess the initial void fraction distribution, velocity profiles of both phases and pressure as
follows: a � a0;UL;0 (liquid inlet velocity)� const.; UG;0 (gas inlet velocity)� const.;
VL;0 � VG;0 � 0;P0 � rLg�Lpipe ÿ x�.

2. Solve the flow field of the liquid phase with the first guess of step 1; thusUL;1;VL;1 andP1 are
obtained witha0;UG;0 andVG;0.

3. Inject 1000 bubbles at the inlet uniformly and trace the bubble movements and tracks until they
leave the outlet of the pipe. It usually takes 3000–5000 time steps for these bubbles to pass
through the channel. Collecting the bubble velocities and tracks at each computational cell will
determine the updated void fractiona1 and gas velocitiesUG;1 andVG;1.

4. Obtain the updated liquid phase velocitiesUL;2;VL;2 and pressureP2 by repeating step 2 with
a1;UG;1 andVG;1.

5. Repeat step 3 to finda2;UG;2 andVG;2; this is the second iteration.
6. Repeat the iteration loop of steps 2–5 until the convergence criterion

am ÿ am�1

am

�
�
�
�

�
�
�
�
4 0�1%

is reached, i.e. compare the void fractions of themth and (m� 1)th iterations. This usually takes
30–40 iterations in the present work.

TEST GEOMETRY AND CONDITIONS

A two-dimensional, axisymmetric analysis is performed next. Since a comparison is made of the
numerical calculations with the data reported by Liu,8 the experimental conditions listed in Reference
8 are employed in the present analyses. The pipe diameterD is 38�1 mm. Though the length of the
test section in Liu’s work is 2�8 m, the calculational domain only extends to 2�286 m (� 60D) in this
study, since no experimental data are presented forL=D > 36�0 in Reference 8. The calculated results
are compared with the experimental data atL=D � 36�0 for all cases. Moreover, four more inputs are
required for each simulation: the superficial velocities for the liquid and gas phases, mean void
fraction and mean bubble diameter. The superficial velocities for the liquid phase are 0�376, 0�535,
0�753, 0�973, 1�087 and 1�391 m s71, while the superficial velocities for the gas phase are 0�027,
0�067, 0�112, 0�180, 0�230, 0�293 and 0�347 m s71. The mean void fraction and mean bubble
diameter range 1�48% to 41�68% and from 2�0 to 4�2 mm respectively. A total of 42 sets of
experiments in Liu’s work have been simulated.

EULERIAN–LAGRANGIAN COMPUTATIONS ON BUBBLY FLOWS 585

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 579–593 (1997)



RESULTS AND DISCUSSIONS

One of the 42 experiments has been chosen to perform a grid dependence test for the numerical
simulation. The liquid and gas superficial velocities are 1�087 and 0�112 m s71 respectively. The
mean void fraction for this case is 7�37%. The fine and coarse grid systems consist of 49633 and
49621 grid points respectively. They�-values for the nodes next to the pipe wall are about 35 for
both grid systems. Insignificant differences in the velocities and void fraction are obtained using these
two grids. Thus the 49621 grid system is employed to perform all computations.

Figure 1 shows typical calculated results of the development of the liquid velocity field, gas
velocity field and some bubble tracks. It demonstrates that the boundary layer thickness decreases for
the liquid phase and the gas velocity increases near the pipe centreline as the flow goes downstream
(i.e. L=D increases). A tendency arises in which bubbles move towards the pipe wall to some extent
as they go downstream. The radial component of the gas velocity vector does not vanish even near the
exit of the pipe, which implies that the flow is not fully developed yet. For the present investigation,
bubbles are injected uniformly into the pipe. The tracks shown in Figure 1(c) illustrate the mean
bubble migration behaviour, while a single bubble actually moves in a zigzag path in the
experiments.

Figure 2 provides a detailed description of the velocity profile development for both liquid and gas
phases. Figures 1 and 2 indicate that the axial velocity profiles for both liquid and gas phases do not
change significantly forL=D > 20�0 and the so-called fully developed velocity profile is never
actually reached in a strict sense, especially for the gas phase. A direct comparison is also made of the
model predictions with Liu’s8 data. Data set I of Liu8 was obtained by a hot film boundary layer
probe for liquid velocity and a dual-sensor electrical resistivity probe for gas velocity. Additionally,

Figure 1. Development of (a) liquid velocity field, (b) gas velocity field and (c) some tracks traced by bubbles injected into
liquid flow field. The superficial velocities for the liquid and gas phases are 1�087 and 0�112 m s71 respectively
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data set II is obtained by a dual-sensor X-type hot film probe. For both single-phase and two-phase
conditions the predictions correlate well with the experimental data, thereby confirming the validity
of the present model. The single-phase velocity profile prediction is satisfactory when the calculated
profiles are compared with the measurements. However, the measured velocity is slightly higher than
the predicted value near the wall. The difficulties of the measurement near the wall may be the cause.
For the two-phase flow the computed profiles of liquid velocity agree well with the measured profiles
at X=D � 36. This demonstrates the excellent capability of predicting the liquid velocity by the
proposed model and present numerical method except near the wall. Furthermore, the predictions at
the stationsX=D � 21, 36 and 50 imply that the liquid velocity profiles are flattened near the wall as
the flow goes downstream. The tendency of bubble movement towards the wall and the presence of
the bubbles increase the diffusion and explain the above observation. The present work also obtains
the gas phase velocity profiles at all locations and these plots indicate that the present approach can
achieve reasonable predictions except near the wall. The results indicate that further improvements
near the wall are needed. Figure 2 also reveals a near-uniform relative velocity between liquid and
gas phases in the radial direction except near the pipe wall. The situations in which bubbles are
sliding on the pipe wall implies that the gas velocity can be identified on the basis of the movement of
the bubbles. Therefore the gas axial velocity near the wall is not reduced as the liquid phase velocity
is. Thus the relative velocity near the wall becomes somewhat larger than the near-uniform value in
the core region.

The development of a void profile is shown in more detail in Figures 3(a) and 3(b). The peak value
of void fraction distribution is located atr=R around 0�9. More bubbles accumulate near the pipe wall
asL=D increases. The peak value therefore increases as the fluid flows downstream. In contrast, the
void fraction is decreasing in the core region. Similar results were observed in Serizawa’s20

experiment. However, Liu21 reported an opposite trend showing the near-wall peaking of the void
profile tends to be flattened in the downstream region. The conflict between the prediction and Liu’s21

observation may result from the assumptions of constant bubble size and no bubble coalescence or
break-up. The bubble dynamics, which is not of primary concern and not considered in this study, is
regarded as an important mechanism of the void fraction distribution by Zunet al.22

Figure 2. Development of liquid and gas velocity distributions
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The peak location of the void fraction result from two competitive forces, i.e. the lift force and wall
force, acting on bubbles. Figure 4(a) presents a comparison of these two interfacial forces at several
axial locations. The wall force exists near the pipe wall only and vanishes whenr=R < 0�85. The
negative value of the wall force indicates that the gas bubble is pushed away from the pipe wall. In
contrast, the lift force is positive, indicating that this force drives the gas bubble towards the channel
wall. The lateral lift force is proportional to the velocity gradient (see equation (8)) and therefore is
increased sharply and reaches a peak near the pipe wall. The balance of lateral force and wall force
results in the peak location for a void profile as found in Figure 4(b). The sum of these two forces is
zero atr=R � 0�9, which is consistent with the peak location shown in Figure 3.

Figures 5 and 6 illustrate the comparison of model predictions of phasic velocity profiles, void
fraction distribution and turbulent shear stress with experimental data for various superficial

Figure 3. Development of void fraction distribution
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velocities at a given superficial gas velocity and for various superficial gas velocities at a given
superficial liquid velocity respectively. In general the predictions correlate well with Liu’s8 data,
especially for those cases with a lower mean void fraction. The turbulent shear stresses shown in
Figures 5(d) and 6(d) are somewhat overpredicted. However, the model predicts the same trends as
the experiment.

Figure 7 shows an overall comparison of predictions with the experimental data of all 42 cases in
Liu’s8 study. As shown in Figure 7(a), the present method accurately predicts the axial velocity
distribution for the liquid phase. However, several points in Figure 7(a) are located outside the 20%
error bands. These points are the two cases with a higher mean void fraction, i.e. 36�57% and 41�68%.
These two cases are expected to be near the slug flow regime according to the model of Serizawa and
Kataoka.23 If these two conditions are excluded, more than 99% of the predictions are within the 20%

Figure 4. Distribution and comparison of interfacial momentum transfer due to lateral lift force and wall force in radial
direction
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error bands; in addition, more than 90% are within the 10% error bands. Further the correlations for
the cases with larger superficial liquid velocities are better than those for the smaller ones both
quantitatively and qualitatively. The overall comparison of predicted gas velocities with experimental
data is presented in Figure 7(b). About 91% of the data points are predicted within the 20% error
bands; in addition, almost all the data points are predicted within the 30% error bands. Figure 7(c)
and 7(d) show the accuracy of the present model in predicting the void fractionaG and turbulent shear
stressÿrLu0

Ln
0

L. About 55% of the data points of void fraction are predicted within the 30% error
bands. Most of the points outside the error bands are located near the centreline of the pipe, where the
model tends to overpredict the Reynolds stress values. As shown in Figure 7(d), the prediction of
turbulent shear stress is less satisfactory, especially for those cases with a mean void fraction higher
than 20%. However, acceptable predictions are obtained for the cases withhaGi less than 20%. This
correlation shows the present model is more suitable for those cases with a small average void
fraction (< 20%); in addition, the model must be modified for the cases with a higher void fraction
(> 20%).

Figure 5. Comparison of predicted (a) axial velocity profile of liquid phase, (b) axial velocity profile of gas phase, (c) void
fraction distribution and (d) turbulent shear stressÿrLu0

Lv
0

L with experimental data of Liu8 at L=D � 36�0 for
JG �0�230 m s71 andJL � 0�535, 0�753, 1�087 and 1�391 m s71
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CONCLUSIONS

A Eulerian formulation for the continuous (liquid) phase and a Lagrangian approach for the disperse
(gas) phase have been proposed and employed in this study to investigate the multidimensional phase
distribution for air–water two-phase bubbly flows. The developing two-phase flow characteristics, i.e.
the velocities for both phases, void fraction distribution and liquid turbulent properties, can be
obtained. The model predictions of various two-phase flow characteristics correlate well with the data
of Liu8 for low mean void fraction. The velocity fields for both phases are accurately predicted in
most cases. The near-wall-peaking void fraction profiles are predicted for all cases with a sufficient
correlation both in trend and magnitude. Also, the turbulent shear stressÿrLu0

Ln
0

L is overpredicted;
however, the correct trend and magnitude can be obtained by the present model with a mean void
fraction less than 20%.

Figure 6. Comparison of predicted (a) axial velocity profile of liquid phase, (b) axial velocity profile of gas phase, (c) void
fraction distribution and (d) turbulent shear stressÿrLu0

Lv
0

L with experimental data of Liu8 at L=D�36�0 for JL �1�087 m s71

andJG �0�067, 0�112, 0�230 and 0�347 m s71
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